Preparation and Structural Studies of Diphenylthiophosphinito Rhodium(III) Complexes. X-Ray Structure Analysis of $[{(C_5Me_5)Rh}_2(\mu-Cl)_2(\mu-Ph_2PS)][BPh_4]^{\dagger}$

M. Teresa Pinillos, M. Pilar Jarauta, Daniel Carmona, and Luis A. Oro* Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain M. Carmen Apreda, Concha Foces-Foces, and Felix H. Cano Departamento de Rayos-X, Instituto Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 23006 Madrid, Spain

The tri- μ -hydroxo-dirhodium complex [{(C₅Me₅)Rh}₂(μ -OH)₃][ClO₄] (1) reacts with the appropriate amount of Ph₂P(S)H, in acetone, to give $[{(C_5Me_5)Rh}_2(\mu-OH)_n(\mu-Ph_2PS)_{3-n}][CIO_4]$ [n = O(2)or 1(3)]. Reaction of complex (1) with an equimolar amount of Ph₂P(S)H, in methanol gave the di- μ -methoxo- μ -diphenylthiophosphinito complex [{(C₅Me₅)Rh}₂(μ -OMe)₂(μ -Ph₂PS)][ClO₄] (5). The mixed-bridged complex $[(C_5Me_5)Rh]_2(\mu-OMe)(\mu-pz)(\mu-Ph_2PS)][CIO_4]$ (6) (pz = pyrazolate) was obtained by addition of Ph₂P(S)H to a methanolic solution of $[{(C_5Me_5)Rh}_2(\mu-OH)(\mu-pz)_2]$ -[CIO₄]. The complexes (5) and [{(C₅Me₅)Rh}₂(μ -OH)(μ -Ph₂PS)₂][CIO₄] (3) react with HCl yielding the binuclear chloride compounds $[{(C_5Me_5)Rh}_2(\mu-Cl)_2(\mu-Ph_2PS)][ClO_4]$ (7) and $[(C_{5}Me_{5})Rh]_{2}(\mu-Cl)(\mu-Ph_{2}PS)_{2}][ClO_{4}]$ (9). The doubly homo-bridged complex $[(C_{5}Me_{5}) Rh(Bu^{t}NC)_{2}(\mu-Ph_{2}PS)_{2}[CIO_{4}]_{2}$ (10) can be prepared from $[(C_{5}Me_{5})Rh(acac)(Bu^{t}NC)][CIO_{4}]$ (acac = acetylacetonate ion) and an equimolar amount of $Ph_2P(S)H$. The mononuclear species $[(C_{R}Me_{a})Rh(acac)Cl]$ reacts with an equimolar amount of Ph₂P(S)H in the presence of NaBPh₄ giving the binuclear complex $[{(C_5Me_5)Rh}_2(\mu-Cl)(\mu-Ph_2PS)_2][BPh_4]$ (11). Its n.m.r. spectra show the presence of two isomers. Reaction of $[{(C_5Me_5)RhCl}_2(\mu-Cl)_2]$ with Ph₂P(S)H and KOH yields the mononuclear complex $[(C_{5}Me_{5})Rh(Ph_{2}PS-P)(Ph_{2}PS-PS)]$ (12). This compound is converted by sulphur-atom abstraction into $[(C_{5}Me_{5})Rh(Ph_{2}PS-P)(Ph_{2}PS_{2}-SS)]$ (13). The X-ray structure analysis of $[(C_5Me_5)Rh_2(\mu-Cl)_2(\mu-Ph_2PS)][BPh_4]$ (8) is also reported: the crystals are triclinic, space group $P\overline{1}$, and have been refined to R 0.035 and R' 0.038. The rhodium–rhodium distance is 3.5701(5) Å.

The co-ordination chemistry of metallic derivatives of the pyrazolate ligand has been investigated.¹ In particular, the use of pyrazolate type ligands has proved to be important for the isolation of some unusual methoxo-, hydroxo-, and pyrazolato-bridged pentamethylcyclopentadienyl rhodium complexes.²

Deprotonated diphenylphosphine sulphide (Ph_2PS^-) is an anionic ligand which, like the pyrazolate anion, has two directly bonded donor centres. A variety of platinum metal complexes containing the Ph_2PS^- ligand, either S-bonded,^{3,4} *P*-bonded,^{5,6} or S- and *P*-bonded (bridge⁷⁻⁹ or side-on^{4,10}) have been described in recent years.

In the present paper we describe a study of the co-ordination properties of the Ph_2PS^- anion towards (C_5Me_5)Rh moieties. Part of this work has been reported in a preliminary communication.¹¹

Results and Discussion

The tri- μ -hydroxo complex [{(C₅Me₅)Rh}₂(μ -OH)₃][ClO₄](1) reacted with Ph₂P(S)H (mole ratio 1:3 or excess), in acetone, to give the triply bridged complex [{(C₅Me₅)Rh}₂(μ -Ph₂PS)₃]-[ClO₄] (2). The i.r. spectrum of (2) showed a v(P-S) band at 570 cm⁻¹, and the ¹H n.m.r. spectrum consisted of two C₅Me₅ peaks at δ 1.11(t) and 1.24(d), of equal intensity, indicative of the presence of two different environments for the rhodium atoms. This dirhodium(III) compound is relatively similar to

a reported phosphito complex of formula $[\{(C_5Me_5)Rh\}_2-\{\mu-(MeO)_2PO\}_3]^+$ prepared by Kläui *et al.*¹² In this context, it is interesting that all attempts to prepare the triply bridged complex $[\{(C_5Me_5)Rh\}_2(\mu-pz)_3]^+$ using the pyrazolate (pz) ligand have been unsuccessful, and only neutral doubly bridged complexes $[\{(C_5Me_5)Rh(pz)\}_2(\mu-pz)_2]$ were obtained when using excess of pyrazolate.^{2b}

When the above mentioned reaction between complex (1) and Ph₂P(S)H was performed using a 1:2 mole ratio the heterobridged complex $[{(C_5Me_5)Rh}_2(\mu-OH)(\mu-Ph_2PS)_2][ClO_4]$ (3) was obtained, which shows only one C_5Me_5 peak in its ¹H n.m.r. spectrum at δ 1.28(d) [J(PH) 3.5 Hz]. Furthermore we have attempted the synthesis of the intermediate $[{(C_5Me_5)Rh}_2(\mu-OH)_2(\mu-Ph_2PS)][ClO_4]$ (4) by treating (1) with $Ph_2P(S)H$ in 1:1 mole ratio; the ¹H n.m.r. spectrum of the resulting mixture showed the presence of unreacted (1), (3), and the proposed complex (4) $\lceil \delta(C_5Me_5) \rangle$ 1.39(d) and 1.66(s), J(PH) 3.1 Hz], which however was not isolated in the solid state. These observations suggest that the rate of formation of $[{(C_5Me_5)Rh}_2(\mu-OH)_2(\mu-Ph_2PS)]^+$ (4) from $[{(C_5Me_5)Rh}_2(\mu-OH)_3]^+$ is slower than that of $[{(C_5Me_5)Rh}_2(\mu-OH)(\mu-Ph_2PS)_2]^+$ (3) from (4), as recently proposed for the similar $[{(C_5Me_5)Rh}_2(\mu-OH)_{3-n}(\mu-pz)_n]^+$ $(n = 1 \text{ or } 2) \text{ complexes.}^{2a}$

Interestingly when the reaction between (1) and Ph₂P(S)H (1:1 mole ratio) was performed in methanol the hetero-bridged complex [{(C₅Me₅)Rh}₂(μ -OMe)₂(μ -Ph₂PS)][ClO₄] (5) was isolated. Its ¹H n.m.r. spectrum showed the presence of two C₅Me₅ peaks at δ 1.48(d) [J(PH) 3.0 Hz] and 1.65(s), and one OMe peak at δ 3.50(s). These data suggest that the cations contain one bridging thiophosphinito and two bridging

[†] Di-μ-chloro-μ-diphenylthiophosphinito-*PS*-bis[(η-pentamethylcyclopentadienyl)rhodium(m)] tetraphenylborate.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

methoxo groups. Presumably all these reactions occur via protonation of the hydroxo or methoxo bridges of the starting complexes (the [{(C_5Me_5)Rh}_2(\mu-OMe)_3]⁺ intermediate should be formed by reaction of (1) with methanol) by the Ph₂P(S)H ligands to form aqua or methanol intermediates which react with thiophosphinito groups (Ph₂PS⁻) to give the reported complexes (2)—(5). Noteworthy is the close parallelism between the Ph₂PS⁻ and pz⁻ ligands towards the formation of the hetero-bridged complexes [{(C_5Me_5)Rh}₂-(μ -OR)_{3-n}(μ -L)_n]⁺ (R = Me, n = 1; R = H, n = 1 or 2; L = Ph₂PS or pz). However, the synthesis of complex (2) is a unique feature of the Ph₂PS⁻ ligand.

The mixed-bridged complex $[\{(C_5Me_5)Rh\}_2(\mu-OMe)-(\mu-pz)(\mu-Ph_2PS)][ClO_4]$ (6) can be prepared by treating $[\{(C_5Me_5)Rh\}_2(\mu-OH)(\mu-pz)_2][ClO_4]$ with $Ph_2P(S)H$ (1:1 mole ratio) in methanol $[\delta(C_5Me_5): 1.32(d), J(PH) 3.50; 1.61(s); \delta(OCH_3) 3.50(d), J(PH) 1.29; \delta(pz) 6.52(t) and 8.07(d), J(HH) = 2.0 Hz]$. Attempts to prepare μ -hydrido complexes by adding $Ph_2P(S)H$ (mole ratio 1:1) to a solution of (1) in propan-2-ol have been unsuccessful, although the μ -hydrido- μ -pyrazolate complex $[\{(C_5Me_5)Rh\}_2(\mu-H)_2(\mu-pz)][BF_4]$ has been obtained from $[\{(C_5Me_5)Rh\}_2(\mu-OH)_3][BF_4]\cdot H_2O$ with pyrazole in propan-2-ol.¹³

When an acetone solution of the di- μ -methoxo- μ -thiophosphinato-rhodium(III) complex [{(C₅Me₅)Rh}₂(μ -OMe)₂(μ -Ph₂PS)][ClO₄] (5) was treated with 2 equivalents of HCl it quantitatively yielded the triply-bridged complex [{(C₅Me₅)-Rh}₂(μ -Cl)₂(μ -Ph₂PS)][ClO₄] (7) plus 2 mol of methanol. The ¹H n.m.r. spectrum of (7) shows a singlet at δ 1.68 and one doublet at 1.34 [J(PH) 3.3 Hz] arising from two different types of C₅Me₅ environment. Since the red crystals of (7) deteriorated rapidly when removed from the solution, the BPh₄ analogue (8) was prepared, which showed satisfactory crystal stability, so enabling an X-ray crystallographic study to be made (discussed below).

The chloro-bridged complex $[\{(C_5Me_5)Rh\}_2(\mu-Cl)(\mu-Ph_2-PS)_2][ClO_4]$ (9) was isolated from the reaction of complex (3) with 1 equivalent of HCl in acetone. Both the above reactions imply preferential protonation of the methoxo or hydroxo groups and the displacement of the neutral methanol or water formed, by μ -chlorides. The products (7) and (9) are directly related to recently reported pyrazolate complexes $[\{(C_5Me_5)Rh\}_2(\mu-Cl)_2(\mu-pz)][BF_4]$ and $[\{(C_5Me_5)Rh\}_2(\mu-Cl)_2(\mu-pz)][BF_4]$ and $[\{(C_5Me_5)Rh\}_2(\mu-Cl)_2(\mu-pz)][BF_4]$ also prepared in our laboratory.¹³

A doubly homo-bridged complex $[{(C_5Me_5)Rh(Bu'NC)}_2$ $(\mu-Ph_2PS)_2$ [ClO₄]₂ (10) can readily be prepared by treating $[(C_5Me_5)Rh(acac)(Bu'NC)][ClO_4]$ (acac = acetylacetonate ion) with Ph₂P(S)H (mole ratio 1:1) in acetone. The i.r. spectrum of complex (10) showed the presence of only one broad v(CN) band at 2 180 cm⁻¹, whilst its ¹H n.m.r. spectrum showed two resonances in the ratio 30:18, a doublet at δ 1.80 [30 H, J(PH) 2.4 Hz] and a singlet at 1.16 (18 H). These spectral data are fully in accord with the Bu'NC ligand occupying a terminal position. Other diketonato complexes such as $[(C_5Me_5)Rh(acac)L][ClO_4]$ [L = pyridine (py) or PPh₃] also reacted with Ph₂P(S)H in acetone, but an unidentified mixture of products was formed. When $[(C_5Me_5)Rh(acac)Cl]$ was treated with $Ph_2P(S)H$ in the presence of NaBPh₄ in methanol the hetero-bridged complex $[{(C_5Me_5)Rh}_2(\mu-Cl)(\mu-Ph_2PS)_2]$ - $[BPh_4]$ (11) was obtained. In solution this appears to be a mixture of an asymmetric (11a) and a symmetric (11b) isomer. In (11a) the Ph₂PS unit forms Rh-P-S-Rh bridges in such a fashion as to generate a $(C_5Me_5)RhP_2$ and a $(C_5Me_5)RhS_2$ unit. Accordingly, in the ¹H n.m.r. spectrum the asymmetry of the complex (11a) was indicated by two C₅Me₅ peaks with a singlet at δ 1.58 and a triplet at 1.17 [J(PH) 4.0 Hz]. In (11b) each (C₅Me₅)Rh unit is co-ordinated to one P and one S donor atom so that the ¹H n.m.r. spectrum shows only one C₅Me₅

Figure 1. Proposed structure for complex (12) and structural diagram of complex (13)

peak at δ 1.16(d) [J(PH) 3.4 Hz]. Interestingly, when the reaction between [(C₅Me₅)Rh(acac)Cl] and Ph₂P(S)H was performed in acetone only the symmetric isomer (11b) was obtained. These compounds are similar to recently reported complexes of formula [{(C₅H₅)Ni}₂(μ -R₂PS)₂] prepared recently by Kläui *et al.*¹⁴ The rate of isomerization of compounds (11a) and (11b) is solvent dependent, whereas Kläui demonstrated that isomerization of the nickel complexes was an intramolecular process without involvement of monomeric units.

The complexes discussed so far in this study show the Ph_2PS ligand in a bridging mode between the two metal centres. However as stated earlier, side- or end-on co-ordination is also possible.

Reaction of $[{(C_5Me_5)RhCl}_2(\mu-Cl)_2]$ with a mixture of $Ph_2P(S)H$ and potassium hydroxide in methanol, at room temperature, led to the formation of [(C₅Me₅)Rh(Ph₂PS-P)-(Ph₂PS-PS)] (12) as an orange solid. In its ¹H n.m.r. spectrum, coupling between the hydrogen atoms of the C₅Me₅ ring and phosphorus was detected [J(PH) 3.2 Hz], giving a pseudo-triplets at δ 1.42 for this resonance. Such coupling is consistent with direct rhodium-phosphorus bonds, a fact further supported by the ³¹P n.m.r. data, which shows the presence of two inequivalent phosphorus nuclei each giving a doublet of doublets centred at 54.8 (P¹) and 49.8 (P²) p.p.m. respectively $[^{1}J(RhP^{1}) 142, ^{1}J(RhP^{2}) 120, ^{2}J(P^{1}P^{2}) 35 Hz]$. In particular, the small value of ${}^{1}J(RhP^{2})$ and the requirement of six-co-ordination for the Rh^{III} centre suggest the incorporation of P^2 into a three-membered ring system. These spectroscopic data, together with the molecular weight determination for complex (12) support the presence of two different Ph₂PS ligands; one co-ordinated 'end-on' through phosphorus, the other 'side-on' through phosphorus and sulphur to the same metal centre (Figure 1).

When a solution of (12) in methanol was left to stand for 24 h, the complex was slowly converted into the dithiophosphinate compound (13). On the basis of the ¹H n.m.r. [(C₅Me₅) 1.32(d), J(PH) 3.4 Hz] and the ³¹P n.m.r. data [$\delta(P^1)$ 63.2, ¹ $J(RhP^1)$ 128, ³ $J(P^1P^2)$ 11; $\delta(P^2)$ 83.0 p.p.m., ² $J(RhP^2) = {}^{3}J(P^1P^2)$ 11 Hz], as well as the i.r. data [$v(PS_2)$ 590, 575; v(PS) 630 cm⁻¹] and elemental analyses, complex (13) was formulated as [(C₅Me₅)Rh(Ph₂PS-P)(Ph₂PS₂-SS)] (Figure 1). These spectroscopic data are also in accord with those found by Robertson and Stephenson ¹⁵ for a rhodium(11) complex containing the Ph₂PS₂ ligand.

The formation of the dithio-complex (13) from (12) presumably occurs via an intermolecular process that may be seen as a nucleophilic attack on the endocyclic electrophile of the PS-co-ordinated Ph₂PS, by the sulphur atom of a second molecule. Consequently, the highly reactive three-membered ring $RhP(Ph)_2S$ formed in (12) undergoes sulphur insertion reaction and the stable four-membered $RhSP(Ph)_2S$ ring struc-

Table 1. Analytical, i.r. data, colour, and yields for the new complexes

		Analysis "/%					
	Complex	C	н	N	I.r. ^b /cm ⁻¹	Colour	Yield
(2)	$[\{(C_5Me_5)Rh\}_2(\mu-Ph_2PS)_3][ClO_4]$	54.2 (54.6)	4.5 (4.9)		570vs ^c	Red	85
(3)	$[{(C_5Me_5)Rh}_2(\mu\text{-}OH)(\mu\text{-}Ph_2PS)_2][ClO_4]$	51.4	5.0		3 540w ^d , 570 ^c	Orange	80
(5)	$[{(C_5Me_5)Rh}_2(\mu\text{-}OMe)_2(\mu\text{-}Ph_2PS)][ClO_4]$	47.8	5.0 (5.4)		550vs, ^c 520vs, ^e 1 050s ^f	Orange	76
(6)	$[\{(C_5Me_5)Rh\}_2(\mu\text{-}OMe)(\mu\text{-}pz)(\mu\text{-}Ph_2PS)][ClO_4]$	48.5 (48.5)	5.2 (5.2)	3.9 (3.1)	550vs, ^c 530vs, ^e 1 050s ^f	Green	75
(7)	$[{(C_5Me_5)Rh}_2(\mu-Cl)_2(\mu-Ph_2PS)][ClO_4]$	44.2 (44.4)	5.2	()	555vs,° 275w ^g	Red	65
(8)	$[\{(C_5Me_5)Rh\}_2(\mu-Cl)_2(\mu-Ph_2PS)][BPh_4]$	62.7	5.5		555,° 275w <i>°</i>	Red	80
(9)	$[{(C_5Me_5)Rh}_2(\mu-Cl)(\mu-Ph_2PS)_2][ClO_4]$	50.4	3.9		565vs,° 275s ^g	Red	75
(10)	$[\{(C_5Me_5)Rh(Bu'NC)\}_2(\mu-Ph_2PS)_2][ClO_4]_2$	50.9	(5.6) 5.9 (5.4)	(2,3)	2 180vs, ^h 580vs ^c	Orange	90
(11)	$[{(C_5Me_5)Rh}_2(\mu-Cl)(\mu-Ph_2PS)_2][BPh_4]$	64.5 (64.5)	5.6	(2.2)	550vs, ^c 250w ^g	Red	80
(12)	$[(C_{5}Me_{5})Rh(Ph_{2}PS-P)(Ph_{2}PS-PS)]$	59.9	5.3		525s,° 590vs°	Red	40
(13)	$[(C_5Me_5)Rh(Ph_2PS-P)(Ph_2PS_2-SS)]$	57.8 (57.9)	4.9 (5.0)		590vs, ⁱ 575vs, ⁱ 630vs ^c	Red	50

^a Calculated values are given in parentheses. ^b Nujol mulls. ^c v(P-S). ^d v(O-H). ^e v(Rh-O). ^f v(C-O). ^g v(Rh-Cl). ^h v(C-N). ⁱ v(PS₂).

Table 2. Proton and ${}^{31}P{-}{{}^{1}H}$ n.m.r. data^{*a*} for the new complexes

	¹ H			${}^{31}P-{}^{1}H$			
Complex	$\delta(C_5Me_5)$	⁴ <i>J</i> (PH)	δ(P)	¹ J(RhP)	³ <i>J</i> (PP)	Others	
(2) ^{<i>b</i>}	1.11(t)	3.5	52.3(dd)	138	7		
	1.24(d)	3.2	61.4(dt)	141	7		
$(3)^{b}$	1.28(d)	3.5	79.5(d)	144			
(5) ^b	1.48(d)	3.0	72.8(d)	161		3.50(s) ^c	
	1.65(s)		()				
(6) ^{<i>b</i>}	1.32(d)	3.5	124.8(d)	168		6.52(t), ^d $8.07(d)$ ^d	
. ,	1.61(s)					3.50(d) °	
$(7)^{e}$	1.34(d)	3.3	63.9(d)	135		()	
~ /	1.68(s)		~ /				
(10) ^e	1.80(d)	2.4	59.2(d)	98		$1.16(s)^{f}$	
$(11a)^{b}$	1.17(t)	4.0	73.7(d)	136		()	
. ,	1.58(s)		()				
(11b) ^b	1.16(d)	3.4	78.0(d)	137			
$(12)^{b}$	1.42(pt)	3.2	49.8(dd)	120	35 <i>ª</i>		
· · ·			54.8(dd)	142	35#		
$(13)^{b}$	1.32(d)	3.4	63.2(dd)	128	11		
``	-(-)		83.0(pt)	11	11		

^a Chemical shift (p.p.m.) relative to SiMe₄ (multiplicity). Coupling constants are in Hz.^b In CDCl₃.^c OCH₃ protons.^d Pyrazolate protons.^e In (CD₃)₂CO. ^f Bu^tNC protons.^{g 2} J(PP).

ture is formed. The structure of complex (13) has been determined by X-ray methods.¹¹

These results confirm, alongside previous work on rhodium chemistry for different formal oxidation states[(II) or (III)], the remarkable ability of the thiophosphinito ligand to stabilize a variety of doubly $[Rh(\mu-Ph_2PS)_2Rh (10)]$ and triply bridged species $[`Rh(\mu-Ph_2PS)_{3-n}(\mu-Y)_nRh' (n = 1 \text{ or } 2, Y = OH (3), (4), or Cl (7), (8), (9), (11); n = 2, Y = OMe (5); n = 0 (2)]. Finally, it is worth noting that 'end-on' and 'side-on' co-ordination modes for the thiophosphinito ligand have been found in complexes (12) and (13). Analytical, selected i.r. data, and yields for all the new complexes prepared are collected in Table 1 and ¹H and ³¹P n.m.r. data are given in Table 2.$

Description of the Structure of Complex (8).—The compound $[C_{32}H_{40}Cl_2PRh_2S]^+[BPh_4]^-$ (8) is a binuclear complex (Figure 2)¹⁶ with both rhodium atoms co-ordinating octahedrally assuming each C_5Me_5 ring can be regarded as occupying three facial sites.

The Rh(1) · · · Rh(2) separation of 3.5701(5) Å (Table 3) is significantly longer than for the rhodium-rhodium distance [3.397(1) Å] in the directly analogous pyridazine complex.¹⁷ The chlorine atoms are in a 'folded' geometry,¹⁸ with the dihedral angle between the planes through Rh(1), Cl(1), Cl(2) and Rh(2), Cl(1), Cl(2) being equal to $30.57(4)^{\circ}$ cf. $37.00(6)^{\circ}$ for the dichloro pyridazine complex.¹⁷ Due to the flexibility of the (Rh, Cl, Cl, Rh) group¹⁸ the arrangement adopted, as far as the Rh–Cl distance is concerned, is likely to reflect steric factors.

Figure 2. ORTEP drawing of complex (8) showing the atomic numbering

Table 3. Selected geometrical parameters for $[{(C_5Me_5)Rh}_2(\mu-Cl)_2-(\mu-Ph_2PS)][BPh_4]$ (8)

(a) Bond distances (Å) and angles (°)

		• •	
Rh(1)-Rh(2)	3.570 1(5)	Rh(2)-Cl(2)	2.587(1)
Rh(1)Cl(1)	2.631(1)	Rh(2)–P	2.345(1)
Rh(1)-Cl(2)	2.458(1)	Rh(2)-CT(2)*	1.810(2)
Rh(1)-S	2.393(1)	C(21)–P	1.919(5)
Rh(1)-CT(1)*	1.781(2)	C(31)–P	1.856(5)
Rh(2)-Cl(1)	2.466(1)	P–S	2.093(2)
S-Rh(1)-CT(1)	128.00(8)	Cl(2)-Rh(2)-CT(2)	123.21(9)
S-Rh(1)-Cl(1)	89.90(4)	Rh(1)-Cl(1)-Rh(2)	89.30(4)
S-Rh(1)-Cl(2)	87.66(4)	Rh(1)-Cl(2)-Rh(2)	90.06(4)
Cl(1)-Rh(1)-Cl(2)	85.47(4)	Rh(1)-S-P	104.1(1)
Cl(1)-Rh(1)-CT(1)	125.61(8)	Rh(2)–P–S	112.0(1)
Cl(2)-Rh(1)-CT(1)	126.94(8)	C(21) - P - C(31)	107.9(2)
P-Rh(2)-CT(1)	133.38(8)	Rh(2)-P-C(21)	114.0(2)
P-Rh(2)-Cl(1)	86.43(4)	C(21)–P–S	107.7(2)
P-Rh(2)-Cl(2)	86.99(4)	C(31)-P-S	103.5(2)
Cl(1)-Rh(2)-Cl(2)	86.67(4)	Rh(2)-P-C(31)	111.2(1)
Cl(1)-Rh(2)-CT(1)	125.78(9)		

(b) Some least-square planes; deviations (Å) of some atoms in parentheses

(i) Rh(1), Cl(1), Rh(2) (ii) Rh(1), Cl(2), Rh(2) (iii) P, S, Rh(1), Rh(2) (iv) P, S, Rh(2) [C(21) -1.479(5), C(31) 1.565(5)] (v) P, C(21), C(31) [S -1.860 9(11), Rh(2) 1.776 4(5)] (vi) C(1), C(2), C(3), C(4), C(5) (vii) C(11), C(12), C(13), C(14), C(15)

Planes	Angles (°)
(i)(ii)	148.5(1)
(i)—(iii)	106.3(1)
(ii)(iii)	105.2(1)
(iii)(v)	89.7(1)
(iv)(v)	89.0(1)
(vi)—(vii)	41.9(2)

* CT(1) and CT(2) are the centroids of the pentamethylcyclopentadienyl rings.

The position of the diphenylthiophosphinito ligand with respect to the central part of the complex can be described by the angle between the planes through P, C(21), C(31) and P, S, Rh(1), Rh(2), equal to 89.7(1)°. The pentamethylcyclopentadienyl rings, C(1)—C(5) and C(11)—C(15), are located almost symmetrically with respect to the four-membered ring, making angles of 97.1(1) and 96.4(1)° respectively with it. The angle between the two C₅Me₅ rings is 41.9(2)°, cf. 37.9(5)° in above mentioned dichloro pyridazine complex,¹⁷ and they are eclipsed $[-1.0(4)^{\circ}]$ with respect to each other.

The Rh(1)–S distance [2.393(1) Å] is in the range of rhodium–sulphur distances for similar complexes, 2.372(2)–2.403(2) Å.^{11,19} The co-ordination distance Rh(2)–P [2.345(1) Å] is longer than those reported for a complex of diphenylphosphine,²⁰ but compares well with that reported ¹¹ for [(C_5Me_5)Rh(Ph₂PS-P)(Ph₂PS₂-SS)] of 2.335(2) Å. The C(21)–P–C(31) angle [107.9(2)] is smaller than Rh(2)–P–S [112.0(1)°]. The P–S distance [2.093(2)Å] is within the range of distances for the complex in ref. 11.

The methyl groups of the C_5Me_5 rings point away from the rhodium atoms [range of deviation: 0.015(7)—0.209(6) Å and 0.003(6)—0.102(7) Å, for each of the rings]. In the C(1)— C(5) ring there are some short contacts with the phenyl groups: H(8b) \cdots H(22) 2.6(1), H(8a) \cdots H(36) 2.5(1), and H(9c) \cdots H(22) 2.9(1) Å.

Experimental

Infrared spectra were recorded on a Perkin-Elmer 783 spectrophotometer (range 4 000–200 cm⁻¹) using Nujol mulls between polyethylene sheets. The C, H, and N analyses were carried out with a Perkin-Elmer 240B microanalyser. N.m.r. spectra were recorded in CDCl₃ or (CD₃)₂CO solutions at room temperature on a Varian XL200 Spectrometer. Proton n.m.r. shifts are reported with respect to SiMe₄, ³¹P-{¹H} n.m.r. shifts to external 85% H₃PO₄. All reactions were carried out at room temperature unless stated otherwise. Solvents were dried and distilled before use.

Starting materials were prepared according to literature procedures: $[{(C_5Me_5)Rh}(\mu-OH)_3][ClO_4],^{21}[{(C_5Me_5)Rh}_2-(\mu-OH)(\mu-pz)_2][ClO_4],^{2a} [(C_5Me_5)RhCl(acac)],^{22} [(C_5Me_5)Rh(acac)(Bu^{1}NC)][ClO_4],^{22} and [{(C_5Me_5)RhCl}_2(\mu-Cl)_2].^{23}$ Other chemicals were reagent grade products and were used without further purification.

Preparations.—Complexes (2) and (3) from (1). Solid $Ph_2P(S)H$ (104.5 mg, 0.48 mmol) was added to a solution of $[\{(C_5Me_5)Rh\}_2(\mu$ -OH)_3][ClO₄] (100 mg, 0.16 mmol) in acetone (20 cm³). The yellow solution rapidly turned red. After stirring for 20 min the volume of the solution was reduced to *ca*. 3 cm³, and addition of diethyl ether led to precipitation of $[\{(C_5Me_5)Rh\}_2(\mu$ -Ph₂PS)_3][ClO₄] (2). The red solid was filtered off, washed with diethyl ether, and air-dried.

Complex (3) was similarly prepared by the route described above, starting from the stoichieometric amount of $Ph_2P(S)H$.

Complex (5) from (1). To a solution of $[\{(C_5Me_5)Rh\}_2(\mu-OH)_3][ClO_4]$ (60 mg, 0.095 mmol) in deoxygenated methanol (10 cm³) was added Ph₂P(S)H (20.9 mg, 0.095 mmol) under a nitrogen atmosphere. The resulting orange suspension was stirred for 20 min, then the solvent was evaporated under reduced pressure to *ca*. 2 cm³, and addition of diethyl ether led to complete precipitation of the orange complex (5). This was filtered off, washed with diethyl ether, and vacuum-dried.

Complex (6) from $[{(C_5Me_5)Rh}_2(\mu-OH)(\mu-pz)_2][CIO_4].$ Addition of Ph₂P(S)H (18.0 mg, 0.082 mmol) to a solution of $[{(C_5Me_5)Rh}_2(\mu-OH)(\mu-pz)_2][CIO_4]$ (60 mg, 0.082 mmol) in deoxygenated methanol (10 cm³) caused a colour change from yellow to dark green. The solution was stirred for 5 h, under a nitrogen atmosphere. Then the solvent was evaporated under

Table 4. Final atomic co-ordinates for complex (8)

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
Rh(1)	0.186 30(2)	0.066 67(2)	0.226 74(3)	C(31)	0.1202(2)	0.358 7(3)	0.168 6(5)
Rh(2)	0.272 70(2)	0.253 38(2)	0.087 37(3)	C(32)	0.132 6(3)	0.363 0(4)	0.319 4(5)
Р	0.142 23(6)	0.261 39(7)	0.074 00(11)	C(33)	0.120 5(4)	0.436 6(4)	0.397 8(7)
S	0.088 97(6)	0.159 54(7)	0.169 86(13)	C(34)	0.096 2(5)	0.506 9(4)	0.325 5(8)
Cl(1)	0.242 52(7)	0.104 18(7)	0.000 59(11)	C(35)	0.084 0(4)	0.503 6(4)	0.177 0(8)
Cl(2)	0.266 12(6)	0.194 49(7)	0.327 03(11)	C(36)	0.096 2(3)	0.430 8(3)	0.096 5(6)
C(1)	0.384 5(3)	0.318 5(3)	0.166 7(6)	В	-0.3212(3)	0.285 9(4)	0.397 8(5)
C(2)	0.329 8(3)	0.379 7(3)	0.126 5(6)	C(41)	-0.2377(3)	0.294 5(3)	0.341 0(4)
C(3)	0.305 0(3)	0.369 3(3)	-0.025 5(6)	C(42)	-0.2041(3)	0.372 6(4)	0.302 1(6)
C(4)	0.340 0(3)	0.297 0(3)	-0.078 5(5)	C(43)	-0.132 0(4)	0.382 3(6)	0.261 1(8)
C(5)	0.390 1(3)	0.268 6(3)	0.039 9(6)	C(44)	-0.091 5(4)	0.311 7(7)	0.255 6(6)
C(6)	0.426 1(3)	0.311 5(5)	0.313 8(7)	C(45)	-0.121 7(3)	0.234 0(5)	0.292 3(6)
C(7)	0.313 7(4)	0.450 0(4)	0.228 7(7)	C(46)	-0.193 2(3)	0.225 3(4)	0.334 1(6)
C(8)	0.257 7(4)	0.428 2(4)	-0.1101(7)	C(51)	-0.3680(3)	0.366 2(3)	0.334 2(5)
C(9)	0.334 4(4)	0.265 5(5)	-0.234 4(7)	C(52)	-0.401 5(3)	0.364 7(3)	0.191 7(5)
C(10)	0.439 6(3)	0.195 8(4)	0.029 9(8)	C(53)	-0.439 7(4)	0.432 2(4)	0.133 7(6)
C(11)	0.165 4(3)	-0.067 4(3)	0.172 3(5)	C(54)	-0.446 6(4)	0.503 8(4)	0.218 1(7)
C(12)	0.110 0(3)	-0.041 4(3)	0.257 0(5)	C(55)	-0.414 1(5)	0.507 7(4)	0.359 1(7)
C(13)	0.148 1(3)	-0.008 1(3)	0.393 9(5)	C(56)	-0.375 6(4)	0.440 0(4)	0.414 4(5)
C(14)	0.227 4(3)	-0.017 1(3)	0.396 2(5)	C(61)	-0.309 7(3)	0.293 2(3)	0.578 9(5)
C(15)	0.238 2(3)	-0.053 5(3)	0.258 4(5)	C(62)	-0.370 4(3)	0.303 4(4)	0.660 9(5)
C(16)	0.150 8(4)	-0.105 0(4)	0.019 5(6)	C(63)	-0.361 8(4)	0.311 7(4)	0.811 2(6)
C(17)	0.026 3(3)	-0.048 4(4)	0.212 9(7)	C(64)	-0.291 7(4)	0.312 7(4)	0.890 1(5)
C(18)	0.111 0(4)	0.020 9(5)	0.521 9(7)	C(65)	-0.231 4(4)	0.303 6(4)	0.814 7(5)
C(19)	0.286 7(4)	0.009 4(4)	0.520 0(6)	C(66)	-0.241 0(3)	0.293 4(4)	0.663 4(5)
C(20)	0.312 1(3)	-0.073 9(4)	0.214 3(7)	C(71)	-0.369 6(3)	0.193 9(3)	0.338 3(5)
C(21)	0.092 5(3)	0.262 7(3)	-0.108 3(5)	C(72)	-0.426 1(3)	0.152 4(3)	0.410 2(5)
C(22)	0.129 1(3)	0.242 0(4)	-0.227 6(6)	C(73)	-0.469 2(3)	0.077 5(4)	0.354 7(6)
C(23)	0.092 3(5)	0.241 1(5)	-0.368 0(7)	C(74)	-0.457 2(3)	0.039 1(4)	0.225 8(7)
C(24)	0.018 3(6)	0.259 5(5)	-0.388 5(8)	C(75)	-0.402 6(3)	0.076 5(4)	0.149 7(6)
C(25)	-0.018 5(4)	0.277 4(4)	-0.273 4(9)	C(76)	-0.360 1(3)	0.153 1(4)	0.205 0(5)
C(26)	0.017 5(3)	0.279 4(4)	-0.131 5(7)				

reduced pressure to $ca. 2 \text{ cm}^3$, and addition of diethyl ether led to the precipitation of (6) as a dark green solid. This was filtered off, washed with diethyl ether, and vacuum-dried.

Complex (7) from (5). Hydrochloric acid $(1.4 \text{ cm}^3, 0.118 \text{ mol} \text{ dm}^{-3}, 0.162 \text{ mmol})$ in water was added to a solution of (5) (70 mg, 0.081 mmol) in deoxygenated acetone (10 cm³). The resulting solution was stirred for 20 min under a nitrogen atmosphere. Vacuum evaporation to *ca*. 2 cm³ and addition of diethyl ether led to precipitation of the red complex, which was filtered off, washed with diethyl ether, and vacuum-dried.

The orange μ -chloro complex (9) was similarly prepared by treating (3) (100 mg, 0.097 mmol) with HCl (0.83 cm³, 0.118 mol dm⁻³, 0.097 mmol).

Complex (8) from (7). To a solution of complex (7) (100 mg, 0.115 mmol) in methanol (20 cm³) was added NaBPh₄ (39.6 mg, 0.115 mmol), and a red solid precipitated spontaneously. The resulting suspension was stirred for 20 min. The solid was filtered off, washed with methanol, and air-dried.

Complex (10). A mixture of $[(C_5Me_5)Rh(acac)(Bu^tNC)][Cl-O_4]$ (100 mg, 0.192 mmol) and Ph₂P(S)H (42 mg, 0.192 mmol) in acetone (20 cm³) was stirred for 30 min. The resulting red solution was concentrated under reduced pressure to *ca*. 2 cm³; addition of diethyl ether led to the precipitation of a dark orange solid which was filtered off, washed with diethyl ether, and air-dried.

Complexes (11a) and (11b). To a mixture of $[(C_5Me_5)RhCl-(acac)]$ (100 mg, 0.268 mmol) and $Ph_2P(S)H$ (58.6 mg, 0.268 mmol) in acetone or methanol (20 cm³) was added NaBPh₄ (45.9 mg, 0.134 mmol). The starting material dissolved and after stirring for 5 min a red solid precipitated spontaneously. The resulting suspension was stirred for 20 min, after which the complex was filtered off, washed with acetone or methanol, and air-dried.

Complex (12). To a mixture of $[{(C_5Me_5)RhCl}_2(\mu-Cl)_2]$ (300 mg, 0.485 mmol) and Ph₂P(S)H (635.5 mg, 2.912 mmol) in deoxygenated methanol (20 cm³), KOH in methanol (5.9 cm³, 0.164 mol dm⁻³, 0.967 mmol) was added under a nitrogen atmosphere. The red complex precipitated spontaneously and was isolated after partial evaporation to *ca*. 10 cm³. It was filtered off, washed with diethyl ether, and vacuum-dried.

Complex (13) from (12). Upon standing in methanol solution, complex (12) undergoes complete conversion into (13) within 24 h, giving red crystals which were isolated by filtration and air-dried.

Crystal Structure Determination of $[{(C_5Me_5)Rh}_2(\mu-Cl)_2-(\mu-Ph_2PS)][BPh_4].-Crystal data. C_{56}H_{60}BCl_2PRh_2S, tri$ clinic, space group PI, <math>M = 1083.65, a = 17.9555(9), b = 15.5815(9), c = 9.9233(3) Å, $\alpha = 91.730(4)$, $\beta = 96.962(4)$, $\gamma = 95.087(4)^{\circ}$ (by least-squares fit of the angular positions of 65 reflections with $2\theta < 90^{\circ}$, Cu- K_{α} radiation), U = 2.742.6(2) Å³, $D_c = 1.312$ g cm⁻³, $\mu = 67.74$ cm⁻¹ [empirical absorption correction applied ²⁴]. A crystal of 0.37 × 0.17 × 0.07 mm was used to collect 7 581 independent reflections on a Philips PW 1100 diffractometer, with graphite-monochromated Cu- K_{α} radiation. Data were measured with ω --2 θ scan amplitide of 1.5° and a detector aperture of $1.0 \times 1.0^{\circ}$. The standard reflections monitored gave no significant variation during the collection time. 6 660 Reflections were considered as observed $[I > 3\sigma(I)]$.

Solution and refinement. The structure was solved by Patterson analysis²⁵ and direct methods.²⁶ It was refined anisotropically by least-squares minimization of $\Sigma w \Delta^2$ with w = 1initially. A weighting scheme was then applied to give no trends in $\langle w \Delta^2 F \rangle$ versus $\langle F_o \rangle$ or $\langle \sin \theta / \lambda \rangle$. The final R and R' [R = $(\Sigma w \Delta^2 / \Sigma w F^2)^{\frac{1}{2}}$, $\Delta = |F_o| - |F_c|$] were 0.035 and 0.038 respectively. The H atoms were located from a difference synthesis and included isotropically in the refinement. The final ΔF map showed no electron-density peaks greater than 0.56 e Å⁻³.

Final atomic co-ordinates for the non-hydrogen atoms are given in Table 4. The scattering factors were taken from ref. 27. All calculations were done on a VAX 11/750 computer using mostly the X-RAY 76 system.²⁵

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

References

- 1 S. Trofimenko, Prog. Inorg. Chem., 1986, 39, 116.
- 2 (a) L. A. Oro, D. Carmona, M. P. Lamata, M. C. Apreda, C. Foces-Foces, F. H. Cano, and P. M. Maitlis, *J. Chem. Soc., Dalton Trans.*, 1984, 1823; (b) L. A. Oro, D. Carmona, M. P. Lamata, C. Foces-Foces, and F. H. Cano, *Inorg. Chim. Acta*, 1985, **97**, 19.
- 3 V. Marsala, F. Faraone, and P. Piraino, J. Organomet. Chem., 1977, 133, 301.
- 4 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 192, 115.
- 5 D. M. Anderson, E. A. V. Ebsworth, T. A. Stephenson, and M. D. Walkinshaw, J. Chem. Soc., Dalton Trans., 1982, 2343.
- 6 D. M. Anderson, E. A. V. Ebsworth, T. A. Stephenson, and M. D. Walkinshaw, Angew Chem., Int. Ed. Engl., 1982, 20, 290.
- 7 E. Lindner and H. Dreher, J. Organomet. Chem., 1976, 105, 85.
- 8 B. Walther, B. Messbauer, and H. Meyer, Inorg. Chim. Acta, 1979, 37, L25.
- 9 A. F. M. M. Rahmann, C. Ceccanelli, J. P. Oliver, B. Messbauer, H. Meyer, and B. Walther, *Inorg. Chem.*, 1985, 24, 2355.
- 10 H. P. M. M. Ambrosius, J. H. Noordik, and G. J. A. Arions, J. Chem. Soc., Chem. Commun., 1980, 832.
- 11 M. T. Pinillos, M. P. Jarauta, D. Carmona, L. A. Oro, M. C. Apreda, C. Foces-Foces, and F. H. Cano, J. Organomet. Chem., 1988, 345, C13.
- 12 W. Kläui, H. Otto, W. Eberspach, and E. Buchbolz, *Chem. Ber.*, 1982, 115, 1922.

- 13 D. Carmona, L. A. Oro, M. P. Lamata, M. P. Puebla, J. Ruiz, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1987, 639.
- 14 W. Kläui, K. Schmidt, A. Bockmann, P. Hofmann, H. R. Schmidt, and P. Stauffert, J. Organomet. Chem., 1985, 286, 407.
- 15 D. R. Robertson and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1978, 486.
- 16 C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, U.S.A., 1965.
- 17 L. A. Oro, D. Carmona, F. J. Lahoz, M. P. Puebla, M. Esteban, C. Foces-Foces, and F. H. Cano, J. Chem. Soc., Dalton Trans., 1986, 2113.
- 18 R. J. Hoare and O. S. Mills, J. Chem. Soc., Dalton Trans., 1972, 2141.
- 19 J. J. Bonnet, Ph. Kalck, and R. Poiblanc, Inorg. Chem., 1977, 16, 1514.
- 20 J. Andrew, S. Duncan, T. A. Stephenson, and M. D. Walkinshaw, J. Chem. Soc., Dalton Trans., 1984, 801.
- 21 A. Nutton, P. M. Bailey, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1981, 1997.
- 22 W. Rigby, H. B. Lee, P. M. Bailey, J. A. McCleverty, and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1979, 387.
- 23 J. W. Kang, K. Moseley, and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
- 24 N. Walker and D. Stuart, DIFABS, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 25 J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck, and H. Flack, 'The X-Ray System,' Technical report TR-446, Computer Science Center, University of Maryland, 1976.
- 26 P. T. Beurskens, W. P. Bosman, H. M. Doesburg, R. O. Gould, Th. E. M. Van den Hark, P. A. J. Prick, J. H. Noordik, G. Beurskens, V. Parthasarathi, H. J. Bruins Slot, and R. C. Haltiwanger, DIRDIF System, Crystallography Laboratory, Toernooivel, Nijmegen, 1983.
- 27 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

Received 7th December 1988; Paper 8/04822C